If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-100=0
a = 2; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·2·(-100)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{2}}{2*2}=\frac{0-20\sqrt{2}}{4} =-\frac{20\sqrt{2}}{4} =-5\sqrt{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{2}}{2*2}=\frac{0+20\sqrt{2}}{4} =\frac{20\sqrt{2}}{4} =5\sqrt{2} $
| -7p-3=-(-p-5) | | 41*5x=12 | | x-2.2=8.59 | | 8-5r=r-10 | | 6y-2=110 | | 5p+5=p+12 | | 40+10(x)=180 | | -3-7z=-3-9z | | 5^4x-4^3=7^6x-2^3 | | 6(4x+1)^2+7(4x-1)-5=0 | | 2x+3+6x=11 | | 7(3x9)=21x-63 | | 6a-5=14.8 | | F=3f+6 | | 12=-x+4x | | -1/5=4/15+3x/7 | | -9x^2+54x-77=0 | | 8−2p=15 | | 8+10r=8r | | 70.4=8(m+2.2) | | 8k+6=−10k+10 | | 12x5x=41 | | -6j+9=-5j | | |p-5|=12=-9 | | 5u^2+240=0 | | X^2+11x+18=7 | | −8k+6=−10k+10 | | 12x5x=41 | | -10-7n=-9 | | -15=5h | | 88.2=9(m+3.7) | | 6x+37=9x+7 |